1,220 research outputs found

    Stability of two-dimensional spatial solitons in nonlocal nonlinear media

    Get PDF
    We discuss existence and stability of two-dimensional solitons in media with spatially nonlocal nonlinear response. We show that such systems, which include thermal nonlinearity and dipolar Bose Einstein condensates, may support a variety of stationary localized structures - including rotating spatial solitons. We also demonstrate that the stability of these structures critically depends on the spatial profile of the nonlocal response function.Comment: 8 pages, 9 figure

    Stabilization of higher-order vortices and multi-hump solitons in media with synthetic nonlocal nonlinearities

    Full text link
    We address the evolution of higher-order excited states, such as vortex and multi-hump solitons, in nonlocal media with synthetic, competing focusing and defocusing nonlinearities with different nonlocal transverse scales. We reveal that introduction of suitable competing effects makes possible the stabilization of vortex solitons with topological charge m>2, as well as one-dimensional multi-hump solitons with number of humps p>4, all of which are highly unstable in natural nonlocal materials with focusing nonlinearities.Comment: 14 pages, 5 figures, to appear in Physical Review

    The frustrated Brownian motion of nonlocal solitary waves

    Full text link
    We investigate the evolution of solitary waves in a nonlocal medium in the presence of disorder. By using a perturbational approach, we show that an increasing degree of nonlocality may largely hamper the Brownian motion of self-trapped wave-packets. The result is valid for any kind of nonlocality and in the presence of non-paraxial effects. Analytical predictions are compared with numerical simulations based on stochastic partial differential equationComment: 4 pages, 3 figures

    Nonlocal stabilization of nonlinear beams in a self-focusing atomic vapor

    Get PDF
    We show that ballistic transport of optically excited atoms in an atomic vapor provides a nonlocal nonlinearity which stabilizes the propagation of vortex beams and higher order modes in the presence of a self-focusing nonlinearity. Numerical experiments demonstrate stable propagation of lowest and higher order vortices over a hundred diffraction lengths, before dissipation leads to decay of these structures.Comment: 3 figure

    Complex light: Dynamic phase transitions of a light beam in a nonlinear non-local disordered medium

    Full text link
    The dynamics of several light filaments (spatial optical solitons) propagating in an optically nonlinear and non-local random medium is investigated using the paradigms of the physics of complexity. Cluster formation is interpreted as a dynamic phase transition. A connection with the random matrices approach for explaining the vibrational spectra of an ensemble of solitons is pointed out. General arguments based on a Brownian dynamics model are validated by the numerical simulation of a stochastic partial differential equation system. The results are also relevant for Bose condensed gases and plasma physics.Comment: 11 pages, 20 figures. Small revisions, added a referenc
    • …
    corecore